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Abstract. We review the singular value decomposition
(SVD) framework and use it for quantifying and discerning
vertical information in greenhouse gas retrievals from col-
umn integrated absorption measurements. While the com-
monly used traditional Bayesian optimal estimation (OE) as-
sumes a prior distribution in order to regularize the inversion
problem, the SVD approach identifies principal components
that can be retrieved from the measurement without explic-
itly specifying a prior mean and prior covariance matrix. We
review the SVD method, explicitly recognize the use of an
uninformative prior and show it to incur no bias from the
choice of the prior. We also make the connection between the
SVD method and the pseudo-inverse, which makes it more
intuitive and easy to understand. We illustrate the use of the
SVD method on an integrated path differential absorption
CO2 lidar measurement model and verify our derivations and
bias-free properties versus optimal estimation using numeri-
cal simulations. In contrast, traditional OE retrievals exhibit
bias when the prior mean used in the retrieval differs from
the true mean. Hence, the SVD method is particularly useful
for situations in which knowledge of the prior mean and prior
covariance of the true state (e.g., greenhouse gas profiles) is
inadequate.

1 Introduction

In the past few decades, anthropogenic climate change has
brought a renewed interest in carbon cycle science and thus
in accurate sensing of greenhouse gases (GHGs). GHG col-
umn remote-sensing measurements are made using satellite-
based optical spectrometers such as those aboard the Green-
house gas Observing Satellite (GOSAT, Kuze et al., 2009)
and the Orbiting Carbon Observatory (OCO-2, Boesch et al.,
2011), ground-based spectrometers such as the Total Column
Carbon Observing Network (TCCON, Wunch et al., 2011)
and other instruments (Gisi et al., 2012). Atmospheric mea-
surements have also been made using airborne integrated
path differential absorption (IPDA) lidar instruments (Ab-
shire et al., 2018; Lin et al., 2015; Menzies et al., 2014; Re-
faat et al., 2016). While column-averaged mixing ratios are
retrieved from measurements using methods ranging from
simple differential absorption ratioing (Refaat et al., 2016),
least-squares line-fitting (Wunch et al., 2011) and traditional
optimal estimation (OE) (Connor et al., 2008), information
about the GHG vertical distribution (which we shall refer to
as vertical information) is more difficult to obtain and typi-
cally not routinely reported as part of GHG retrievals.

Although in principle, the traditional OE (Rodgers, 2000)
is capable of extracting vertical information in the measure-
ment, in practice the assumption of a prior GHG distribu-
tion, which is necessary for the regularization of the prob-
lem, makes the retrieval potentially bias-prone. Here, by tra-
ditional OE we mean an application of the optimal retrieval
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framework as described in Rodgers (2000) where the input
prior covariance matrix is informative (i.e., the prior covari-
ance matrix has at least one finite eigenvalue). In contrast,
the singular value decomposition (SVD) approach (Hansen,
1990) can extract vertical information from the measurement
without assuming any prior GHG distribution. The SVD
method is based on retrieving the leading principal compo-
nents of the trace gas mixing ratio state vector from the mea-
surement. The vertical information contained in the principal
components can provide useful information for carbon flux
inferences, thanks to the correlations between the pressure
broadening (and thus absorption lineshape) of two layers and
their GHG mixing ratios (due to GHG vertical transport).

The theoretical basis of the SVD method has been previ-
ously laid out in the context of the general underdetermined
inversion problem (Hansen, 1990). Rodgers (2000) also has
a discussion on the topic. Borsdorff et al. (2014) present a re-
view of the SVD and related methods in the context of trace
gas retrievals and the connections to the traditional OE as
well as simple profile-scaling methods. The SVD method has
also been applied to remote sensing for ozone (Hasekamp
and Landgraf, 2001) and methane (Butz et al., 2010). Previ-
ous work has used the SVD method primarily to regularize
the underdetermined retrieval problem but also for computa-
tional efficiency and to eliminate the need for knowledge of
the prior distribution.

In this work, we choose a specific greenhouse gas mea-
surement system and study the principal components and
illustrate how they provide useful, quantifiable information
about the vertical distribution of the gas. In choosing to eval-
uate the retrieval method via the principal components, the
implicit prior used is strictly uninformative and does not
cause any bias in the retrieved principal components, which
we explicitly show. In addition, we explore the instrument
spectral resolution necessary to obtain vertical information.
Finally, we illustrate the theory using numerical simulations.

This paper also attempts to make the theoretical frame-
work of the SVD method more accessible to readers who
may not be as familiar with the matrix algebra conventions
used in books like Rodgers (2000). It should be noted that
many of the articles cited in Table 1 use nonmatrix equations
for performing retrievals, even though the matrix formalism
is more complete and general. By choosing a relatively sim-
ple CO2 IPDA lidar system to focus on, we are able to make a
direct connection between the retrieval problem and the un-
derlying physics, with no major assumptions or simplifica-
tions. We also illustrate the most important matrices so that
the reader is able to get an intuitive sense of the physics be-
neath the matrix algebra.

The SVD method works similarly to least-squares line-
fitting retrieval approaches but offers a more formal frame-
work (Borsdorff et al., 2014). Here, we extend the approach
to retrieve vertical GHG profile information without incur-
ring bias from the regularization process. In contrast, the reg-
ularization process in the traditional OE method incurs bias

when the prior GHG vertical profile is not close to the true
GHG vertical profile. Biases are a concern for atmospheric
carbon dioxide (CO2) measurements, since even small biases
are known to affect carbon flux inversions (Chevallier et al.,
2014).

The paper is organized as follows. In Sect. 2, we introduce
the problem of regularization, which is intimately tied in to
the challenge of extracting information about the vertical dis-
tribution, and set up the radiative transfer equations and re-
trieval equations. We follow it up in Sect. 3 with a description
of the SVD method, its ability to extract vertical information
and its robustness against bias in the absence of prior infor-
mation on the GHG vertical profile. In Sect. 4, we apply the
SVD method to the specific case of the CO2 Sounder lidar
instrument, and proceed in Sect. 5 to perform numerical sim-
ulations comparing the SVD and traditional OE methods. We
then describe the implications of this work in Sect. 6 before
concluding.

2 Retrievals from GHG absorption measurements

A retrieval seeks to extract certain information from a mea-
surement. Even when the number of measurement samples
far exceed the number of retrieved parameters (as with col-
umn GHG absorption measurement spectra), retrieval prob-
lems may or may not be fully determined depending on the
information content of the samples with respect to the re-
trieved parameters. In situations where the retrieval problem
is fully determined, one can obtain a unique solution of the
parameters of interest. When the problem is overdetermined,
one can perform a least-squares fit to solve for the parame-
ters of interest. However, for column GHG absorption mea-
surement spectra obtained from remote sensing, the retrieval
is generally underdetermined, and thus needs some kind of
regularization to make it more deterministic.

2.1 Regularization of the retrieval problem and
vertical information

The traditional Bayesian OE method (Rodgers, 2000) rec-
ommends linearization of the problem close to the solu-
tion followed by regularization by a term corresponding to
a prior distribution for the state. SVD and related methods
(Hasekamp and Landgraf, 2001) perform an unconstrained
retrieval, equivalent to the use of an uninformative prior, on
subspaces of the trace gas column that are informed by the
measurement. These regularization methods allow a solution
to be computed, but may also induce bias on either certain di-
mensions (SVD and related methods) or all dimensions (tra-
ditional OE) of the solution space.

At this point it is useful to qualify what we mean by prior
information. The use of prior information in some form is
unavoidable in any kind of GHG remote-sensing retrieval,
since it is not possible to simultaneously measure all the pa-
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Table 1. Comparison of retrieval algorithms used for GHG remote sensing based on regularization method and source of vertical information.
The approximate spectral resolution (instrument linewidth; see Sect. 4.4), is given in brackets for each type of measurements. The SVD
method proposed in this work extracts information on the vertical GHG distribution strictly from the measurement, making no assumption
of a prior distribution. Note that use of a uniform column for vertical information is equivalent to the use of an uninformative prior. ∗ Butz
et al. (2011) used the prior distribution for regularizing the CO2 retrievals but the SVD-reduced dimensionality for CH4

Measurement Instrument Reference (algorithm) Regularization method Column average Profile info

GHG satellites SCIAMACHY (CO2) Reuter et al. (2010) (CO2), Prior distribution prior+meas prior+meas
(∼ 10−1 cm−1) GOSAT (CO2, CH4) Kuze et al. (2009) (NIES), Prior distribution∗ prior+meas prior+meas

Frankenberg et al. (2006) (CH4)
Crisp et al. (2012) (ACOS),
Butz et al. (2011) (RemoTeC)

OCO-2 (CO2) Connor et al. (2008) Prior distribution prior+meas prior+meas

Ground-based spectrometers TCCON (CO2, CH4, CO, N2O) Wunch et al. (2011) (GFIT) Fixed profile measurement prior
(∼ 10−2 cm−1) TCCON (CO2) Kuai et al. (2012); Dohe (2013) Prior+ reduced levels prior+meas prior+meas

TCCON (CO2) Connor et al. (2016b) (GFIT2) Prior distribution prior+meas prior+meas
TCCON (CH4) Tukiainen et al. (2016) SVD-reduced dimensionality prior+meas prior+meas
Bruker EM27 (CO2) Gisi et al. (2012) (GFIT) Fixed profile measurement prior
Mini-LHR (CO2) Melroy et al. (2015) Fixed profile measurement uniform
Others spectrometers (CO2, CH4) Yuan et al. (2015) Fixed profile measurement prior

Si-Yang et al. (2013)
Petri et al. (2012)

Airborne IPDA lidars CO2 MFLL Lin et al. (2015) Fixed profile measurement prior
(< 10−3 cm−1) CO2 LAS Menzies et al. (2014) Fixed profile measurement prior

CO2 Sounder Abshire et al. (2018) Fixed profile measurement uniform
CH4 Sounder Riris et al. (2012) Fixed profile measurement uniform
2 µm CO2 IPDA Refaat et al. (2016) Fixed profile measurement prior
CHARM-F Amediek et al. (2017) Fixed profile measurement prior

This work Space lidar model SVD-reduced Dim measurement measurement

rameters needed for determining the GHG mixing ratio. For
instance, the absorption depends on the spectroscopic param-
eters, which are determined from laboratory measurements,
and the atmospheric pressure and temperature profile, which
are typically obtained from weather models. A comprehen-
sive quantification of uncertainty that includes errors arising
from all these sources of “prior” information is well beyond
the scope of this work. Rather, we will focus on how the
assumption of a prior GHG distribution in the atmosphere
could affect the retrieved estimate of the GHG profile.

An uninformative prior is one that fills in information nec-
essary for a retrieval (here a GHG profile) but it tries to be
as vague as possible. In this paper, our uninformative prior
makes use of the principle of indifference, which assigns
equal probability to all possibilities. Though the uninforma-
tive prior is used to determine the principal component basis
for retrieval, so long as the validation of the retrieved param-
eters is also done in the principal component basis, there is
no bias incurred even if the uninformative prior differs sig-
nificantly from the actual GHG profile.

Although traditional OE has become the de facto standard
for satellite GHG remote sensing (Oshchepkov et al., 2013),
ground-based spectrometers and airborne IPDA lidar (see Ta-
ble 1) have largely avoided it and other regularization meth-
ods by resorting to dimension reduction. Typically, a fixed
profile shape is assumed (Wunch et al., 2011; Abshire et al.,
2018), and only a simple vertical profile-scaling parameter
is retrieved. Such simple methods have the advantage of en-

abling more feedback on instrument performance by virtue
of forcing the retrieval to derive certain information strictly
from the measurement even when nonoptimal. Despite pre-
liminary evidence to the contrary (Wunch et al., 2010), there
remains the open question of whether biases are introduced
by the assumption of a fixed vertical GHG profile, the po-
tential underfitting of the absorption spectrum and the fail-
ure to exploit all the information contained in the measure-
ment. In addition, this simple scaling of a vertical profile also
precludes such instruments from discerning any information
about the vertical GHG distribution.

Between the traditional OE retrieval and the least-squares
fitting via a simple scaling method, there exist some inter-
mediate choices. In a recent advance, Kulawik et al. (2017)
extract the GHG mixing ratio of two vertical layers from
GOSAT data using the OE method with a reduced vertical ba-
sis and an uninformative prior. The authors choose to use an
uninformative prior for regularization to ensure that any ver-
tical information can be attributed to the measurement alone.
There have also been attempts to retrieve vertical informa-
tion from ground-based sun spectrometer measurements by
easing the constraints imposed by OE, as given in Wunch
et al. (2011). Kuai et al. (2012) and Dohe (2013) used a re-
duced number of vertical levels and applied additional con-
straints via the choice of the prior covariance matrix. In fact,
Cressie et al. (2017) show that, for a fully determined prob-
lem, the (non-Bayesian) least-squares fit is simply a special
case of the optimal estimate using an uninformative prior.
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Thus, one can move back and forth along the spectrum of re-
trieval methods from fully Bayesian-like formalism to non-
Bayesian by varying the prior assumption and the dimension
of the basis describing vertical structure.

Dimension reduction via SVD has been previously used
both for satellite retrievals (Masiello et al., 2012; Thomp-
son, 1992; Butz et al., 2010), ground-based spectrometers
(Tukiainen et al., 2016) and laboratory laser absorption mea-
surements (Bomse and Kane, 2006). The SVD approach de-
scribed here comes closest to the one applied for satellite
methane retrievals (Butz et al., 2010) but performs the re-
trieval in the principal component basis to eliminate bias
originating from the choice of the uninformative prior used
(see Sect. 3.5). Components in the reduced dimensional prin-
cipal component space can be directly assimilated into flux
models similarly to the way XCO2 is presently assimilated
(Basu et al., 2013). Joiner and Da Silva (1998) describe a
method that can ingest such components into an assimilation
model based on their information content.

2.2 The radiative transfer problem

Remote-sensing measurements of GHGs are typically assim-
ilated into a carbon flux inversion system or other modeling
(see Fig. 1). We set up the radiative transfer problem and
retrieval keeping in mind that the measurements are not an
end in themselves. In addition, to best illustrate the SVD
method, we choose a simplified measurement geometry and
atmospheric conditions, all of which are satisfied by a nadir-
pointed IPDA lidar instrument such as Abshire et al. (2018):

1. We choose a nadir sounding geometry with light travel-
ing along a perfect vertical path. Lidar instruments sat-
isfy this condition since they are pointed nadir and have
the source and detector on the same platform.

2. We assume perfect knowledge of the optical path with a
clear atmosphere. Lidar instruments are pulsed (Abshire
et al., 2018; Refaat et al., 2016), or alternatively have
some modulation (Lin et al., 2015), and simultaneously
measure the surface elevation (via ranging) and thus the
precise light path length. In addition, this ranging capa-
bility enables the time-gating of the surface returns so
as to exclude aerosol backscatter, a common cause of
bias.

3. We assume an undistorted measure of atmospheric
transmittance with negligible instrument broadening.
Lidar instruments have narrow laser linewidths, which
determine their instrument lineshape function, which
are typically 3–4 orders of magnitude narrower than
spectrometers. The laser line width is negligible com-
pared to the molecular absorption lineshape and can be
assumed to be monochromatic.

4. We assume negligible interference from other atmo-
spheric species via a careful line choice. Lidar instru-

ments typically sample a single absorption line, rather
than a full absorption band. For this narrow spectral
range, absorption from other species can be ignored.

5. We assume a sufficient number of wavelength samples.
Due to complexities in generating precisely tuned laser
light for wavelength samples, many lidar GHG-sensing
instruments (Refaat et al., 2016; Lin et al., 2015; Men-
zies et al., 2014) use only two wavelength samples.
Here, we assume at least a few wavelength samples
across the absorption line.

We divide the atmosphere into m layers. We make the lay-
ers in equal intervals of pressure to keep the number of air
molecules in each layer the same. The atmospheric transmit-
tance can be expressed as the negative exponent of the sum
of the absorption (expressed in optical depth units) of the in-
dividual layers of height hi :

T (λ,x,b,h)= exp

(
−

m∑
i=1

xiOD(λ,bi)hi

)
, (1)

where T is the two-way transmittance, OD(λ,bi) represents
the spectroscopic model calculating the two-way GHG ab-
sorption in units of optical depth per distance at wavelength
λ for the atmospheric conditions bi (consisting of the atmo-
spheric pressure and temperature). b is a vector containing
the profiles bi . x is the vector containing the GHG mixing
ratio profile xi . The total path length h=

∑
hi is given in

units of distance.
Next we define a measurement vector y consisting of n

samples of an absorption line and define the measurement
equation with noise assuming perfect knowledge of the for-
ward model,

y = F(x)+ ε, (2)

and the forward model,

F(x)=


x0− log

(
T (λ1,x)
T (λ1,xu)

)
...

x0− log
(
T (λn,x)
T (λn,xu)

)
 . (3)

ε represents the measurement noise, which will be described
in Sect. 2.4. The atmospheric conditions and absorption path
have been assumed fixed for each sounding and thus left out
of the explicit notation. We have incorporated a measurement
amplitude x0 term, which includes all signal attenuation and
loss factors in the vector x.

Additionally, we have normalized T (λ,x,z) by
T (λ,xu,z), where xu is the uninformative prior. We
have also taken the natural logarithm to make the problem
linear with respect to the change in the GHG concentration

Atmos. Meas. Tech., 11, 4909–4928, 2018 www.atmos-meas-tech.net/11/4909/2018/



A. K. Ramanathan et al: SVD approach 4913

Forward 
model 

Modeled parameter space 

Measurement space 

x : GHG profile 

GHG mixing ratio

A
lti

tu
de

 

Retrieval 
 

Retrieved 
parameter space 

z : principal
components
of x obtained
via SVD

Validation of
instrument and 
technique

Assimilation
into flux 
modeling

End use 

-0.05

0

0.05

y

Wavelength

3

Ab
so

rp
tio

n 
(o

pt
ic

al
 d

ep
th

)

-log (transmittance)

1

2

Figure 1. Schematic of the various terms involved in a greenhouse gas (GHG) measurement, retrieval and end use. The singular value
decomposition (SVD) method introduces a new retrieval basis space z, which is different from the model parameter space x. In using the z
basis, the SVD retrieval makes no assumptions regarding the prior GHG distribution, thus avoiding a potential source bias and making the
validation and flux modeling more straightforward.

x, enabling the use of the tools of linear algebra. With that,
y is defined as the deviation in the absorption from that of
a column defined by xu rather than the absorption itself. A
schematic of the model parameter and measurement spaces,

x =


x0
x1
...

xm

 and y =

y1
...

yn



is given in Fig. 1.
As with most atmospheric measurements, the retrieval

problem for GHG remote sensing cannot be expressed as a
nonsingular analytic expression based on the forward model.
In the remainder of this section, we will set up the retrieval
problem analogous to Rodgers (2000) and define the various
matrices needed for the solution.

2.3 Forward-model Jacobian

Having set up the radiative transfer problem in Eq. (1) and
defined the forward model in Eq. (3), one can see that the
problem is already linear with respect to the change in GHG
concentration. For the rest of this paper, we will assume that
the forward model is linear (i.e., F(x)=Kx). For problems
that are not linear, one can now take the linear approxima-
tion for small perturbations, a standard technique used ex-
tensively by Rodgers (2000).

Here, we will linearize the problem around the prior mean,
xu. As we will later show mathematically (Sect. 3.5) and
through numerical simulations (Sect. 5), the retrieval in the
principal component basis is insensitive to the choice of the
uninformative prior. We can now express the measurement

vector as

y = F(xu)+
∂F(x)
∂x

(x− xu)+ ε

= c+Kx+ ε, (4)

where K is an n× (m+ 1) matrix of partial derivatives with
the following form,

K=


1 OD(λ1,b1)h1 . . . OD(λ1,bm)hm
1 OD(λ2,b1)h1 . . . OD(λ2,bm)hm
...

...
...

...

1 OD(λn,b1)h1 . . . OD(λn,bm)hm

 (5)

and c is a known constant vector. Without lack of generality,
we assume that c = 0, since in principle it is known and could
be subtracted from y.

2.4 Measurement noise matrix

The measurement y is associated with noise, which we
characterize using the measurement error covariance matrix
(Rodgers, 2000) Sε , which has dimensions n× n. The noise
is assumed to be Gaussian (random noise only) and the diag-
onal elements of Sε represent the variance (in a large sample
of identical, repeated observations) of the individual wave-
length samples. For a perfect instrument, which we assume
here, the off-diagonal terms, which represent covariances be-
tween different wavelength samples are zero.

Sε =


〈(y1−〈y1〉)

2
〉 0 . . . 0

0 〈(y2−〈y2〉)
2
〉 . . . 0

...
... . . .

...

0 0 . . . 〈(yn−〈yn〉)
2
〉


2.5 Retrieval equations

To derive an estimate of the state x from measured radiance
y, we define a loss function (or weighted least-squares error)
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as follows:

L(x)= [y−F(x)]T S−1
ε [y−F(x)]. (6)

Note that Eq. (6) is the same as the method of least squares,
except here we are weighting the sum of squared error by the
measurement error matrix Sε . This weighted sum of squared
errors is widely used in regression frameworks, and it is the
loss function of choice for retrievals that are not based on
optimal estimation (e.g., Atmospheric Infra-Red Sounder or
AIRS, Chahine et al., 2005 and Cressie et al., 2017). In con-
trast to the more common Bayesian treatments of the prob-
lem (Rodgers, 2000), we are not required to explicitly specify
the a priori distribution for x in Eq. (6).

To find the optimum x, we take the derivative of L(x)with
respect to x:

dL
dx

= 2KT S−1
ε [y−Kx].

= KT S−1
ε y−KT S−1

ε Kx.

In the above equations, we have carefully exercised our
choice in linearly mapping the physical world to x by set-
ting xu = 0 for simplicity, and scaling x such that xi =−1
corresponds to the GHG concentration of the ith layer in the
atmosphere being zero. As per Eq. (3), F(xu) is a constant,
which can also be set to zero with no loss in generality. These
sorts of transformations are fairly standard in the literature
(Rodgers, 2000) and make the equations less complicated.
The optimal state vector x̂ that minimizes the loss function
in Eq. (6) can be found by setting the derivative to 0 and
solving as follows:

KT S−1
ε y−KT S−1

ε Kx̂ = 0
KT S−1

ε y = KT S−1
ε Kx̂. (7)

Equation (7) can be used to solve for the optimal estimate
x̂ from a single measurement y. Solving for a unique x̂ is
usually not possible since it requires the inversion of the ma-
trix KT S−1

ε K, which is typically singular. This implies that
the complete information required to retrieve a unique x̂ is
not present in the measurement y. The standard practice, as
described in Rodgers (2000), is to use a priori information
to regularize Eq. (7), but here we will explore the alternative
SVD method.

3 The singular value decomposition approach

The singular value decomposition (SVD) approach (Hansen,
1990) involves regularizing Eq. (7) by only solving for
the principal components of the (m+ 1)× (m+ 1) matrix
KT S−1

ε K. Alternatively, it can be interpreted as inverting
Eq. (7) using a reduced-rank pseudo-inverse (discussed in
Sect. 3.3). Matrix SVD is a standard tool in matrix algebra
which has applications that include least-squares fitting, prin-
cipal component analysis (Wall et al., 2003; Madsen et al.,

2004) and calculating the pseudo-inverse of a matrix, all of
which are related to the approach used here.

Before getting into the formal derivation of the principal
component basis, it is useful to bring in some physical in-
tuition. The nature of the principal components is tied to the
lineshapes of the various atmospheric layers. Pressure broad-
ening of the lineshape in the atmosphere leads to the first
principal component being shaped like a “mean” lineshape
and representing a sort of column average. Higher-order prin-
cipal components represent higher-order moments in the at-
mospheric profile and, as one would expect, are more chal-
lenging to measure.

The remainder of this section formally reviews and de-
scribes the SVD framework along the lines of Butz et al.
(2010). In contrast to previous SVD work (Hansen, 1990;
Hasekamp and Landgraf, 2001; Butz et al., 2010), we de-
scribe the mathematics underlying the SVD approach using
the retrieval basis z of the principal components of KT S−1

ε K,
which we will refer to as the principal component basis. In
Sect. 3.3, we connect the SVD retrieval method to a rank-
reduced pseudo-inverse applied to the retrieval equation. In
Sect. 3.5, we show how using the SVD method with the
principal component basis can avoid bias from regulariza-
tion and thus render the prior truly uninformative. Readers
with a preference for an intuitive understanding based on the
underlying physics can, as they read along, refer to Sect. 4,
which illustrates the SVD framework applied to a specific
instrument and measurement.

3.1 The z retrieval basis of principal components

To calculate the principal component basis z, we perform a
singular value decomposition (Wall et al., 2003) of the matrix

S−
1
2

ε K:

S−1/2
ε K= U0VT , (8)

where

– U is an n× n orthogonal matrix (rows consist of unit
vectors that are normal to each other),

– 0 is an n× (m+1) matrix having all nonmain diagonal
elements (i,j : i 6= j ) equal to zero,

– V is an (m+ 1)× (m+ 1) orthogonal matrix.

The matrix singular value decomposition described in Eq. (8)
is a standard function available in most numerical software
packages. It is also equivalent to extracting the principal
components of KT S−1

ε K via eigenvector decomposition. In a
singular value decomposition, the first few rows of VT cap-

ture the most significant information contained in (S−
1
2

ε K),
and thus by changing and reducing the basis of x, we can
obtain a unique solution to Eq. (7).

Atmos. Meas. Tech., 11, 4909–4928, 2018 www.atmos-meas-tech.net/11/4909/2018/
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The new principal component z basis is defined by

z= ṼT x, where (9)

ṼT = ĨTm+1,pVT

Ĩm+1,p =



1 0 . . . 0
0 1 . . . 0
...

...
. . . 0

0 0 . . . 1
...

...
...

...

0 0 . . . 0


,

where ṼT is a row-truncated version of VT . Both Ṽ and
Ĩm+1,p have dimensions (m+1)×p, where p < (m+1), and
p < n. The truncation size p depends on the information con-
tent in the measurement, with typically 2≤ p ≤ 4 for GHG
measurements described here. The choice of p will be dis-
cussed in more detail in Sect. 5.

We note that the truncation of V leads to the matrix multi-
plication of Ṽ and ṼT being noncommutative for the general
case:

ṼT Ṽ = Ip, (10)
ṼṼT 6= Im+1. (11)

The subscript to I denotes the dimensions of the identity ma-
trix. This noncommutative behavior has implications on the
types of biases resulting from the SVD truncation as we will
later see in Sect. 3.5.

Finally, for completeness, we will look at transformations
between the x and z bases. Given a vector z, one can project
it back onto the x basis using

x = ṼIm+1,pz. (12)

However, conversion using Eq. (12) only projects onto a sub-
space of x. Mathematically, in making a transformation from
x to z using Eq. (9) and back to x using Eq. (12), any in-
formation corresponding to the m+ 1−p dimensions not
present in the z basis is lost. But, starting with the reduced
basis space z, one can transform to the x basis and back with
no loss of information.

3.2 Retrieval equations in the z basis

By substituting Eq. (12) into Eq. (7), effectively projecting
the retrieval onto the subspace of x spanned by z, one can
solve the retrieval equation:

KT S−1
ε y = KT S−1

ε KṼẑ
ṼTKT S−1

ε y = ṼTKT S−1
ε KṼẑ.

In the second equation line above, we have multiplied both
sides by ṼT to also reduce the column space of the equation
to the z basis. This yields an estimate ẑ in the z basis,

ẑ = GSVDy, where (13)

GSVD =

[
ṼTKT S−1

ε KṼ
]−1

ṼTKT S−1
ε . (14)

GSVD is a p× n matrix analogous to the G or “gain” matrix
used in (Rodgers, 2000). In determining GSVD, one needs
to ensure sufficient truncation in Ṽ to ensure that the p×p
matrix [ṼTKT S−1

ε KṼ] is invertible. Since Ṽ consists of the
eigenvectors of KT S−1

ε K, truncation can easily be done by
selecting only eigenvectors with positive eigenvalues.

Equation (13), by selecting just the principal components,
offers a way of regularizing and solving Eq. (7) without re-
lying on the assumption of a prior distribution in x. This al-
lows an alternative retrieval method to the commonly used
Bayesian optimal estimation method.

3.3 Relationship between SVD and OE retrieval

In this section we will explicitly describe the SVD retrieval as
an OE retrieval with a particular uninformative prior and the
replacement of the inverse with the pseudo-inverse in com-
puting the gain matrix GOE. Although the algebra here has
been shown previously (Rodgers, 2000; Butz et al., 2010),
we find it useful to think of the SVD method as simply im-
plementing a pseudo-inverse in lieu of an inverse to solve the
underdetermined retrieval equations.

We start with the analogous traditional OE version of
Eq. (13) as described in Rodgers (2000):

xOE = xa+GOE(y−F(xa)), (15)

where

GOE = (S−1
a +KT S−1

ε K)−1KT S−1
ε ,

where xa and Sa are the a priori mean and covariance matrix
of the state vector x, respectively. With no loss in general-
ity, we set xa = 0. We then use an uninformative prior where
Sa is infinitely large such that S−1

a = 0. We note that the un-
informative prior distribution N(xa,Sa→∞) is technically
an improper prior in that it is not a well-defined probability
distribution. However, it does yield a well-defined Bayesian
posterior distribution. Note that this prior contains no infor-
mation on the distribution of the state x, hence the name “un-
informative” prior. The above equations then reduce to the
following:

xuOE =GuOEy (16)

GuOE = (KT S−1
ε K)−1KT S−1

ε , (17)

where the subscript uOE on x and G indicates that we are
using an uninformative prior within OE. Without the term
S−1

a in Eq. (17), KT S−1
ε K might not be full rank and hence

noninvertible. We will replace its inverse with the Moore–
Penrose pseudo-inverse, which is well defined for singular
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matrices. The gain matrix is now

GuOE = (KT S−1
ε K)+KT S−1

ε , (18)

where the superscript + above a matrix denotes its pseudo-
inverse. Since Sε is positive definite, KT S−1

ε K is positive-
semidefinite and its singular value decomposition is identical
to its eigenvalue decomposition. Therefore, we can express
the singular value decomposition of KT S−1

ε K as follows:

KT S−1
ε K= VDVT , (19)

where D= 0T0, a (m+1)×(m+1) diagonal matrix. 0 here
is the same as defined in Eq. (8). We can truncate the right-
hand side of the equation to remove degenerate rows in V
and degenerate rows and columns in D, without affecting the
equality. However, we choose to truncate further to rank p to
get numerical stability:

KT S−1
ε K≈ ṼD̃ṼT , (20)

where Ṽ and D̃ are truncated versions, with Ṽ being identi-
cal to that used in Eq. (9). If the truncation is applied only
to the degenerate rows, the approximation in Eq. (20) can
be replaced by equality and the pseudo-inverse can be con-
structed from the singular value decomposition per Petersen
and Pedersen (2012). The key results still hold even when we
choose to more aggressively truncate D to rank p in our SVD
method. This is equivalent to replacing the term KT S−1

ε K in
Eq. (17) with the closest rank-p matrix approximation under
the Frobenious norm and then computing its pseudo-inverse
(Eckart and Young, 1936):

(KT S−1
ε K)+ = ṼD̃−1ṼT . (21)

Substituting D̃ from Eq. (20) into Eq. (21), we see that OE
with an uninformative prior and pseudo-inverse is equivalent
to SVD:

xuOE = GuOEy

= (KT S−1
ε K)+KT S−1

ε y

= Ṽ(ṼTKT S−1
ε KṼ)−1ṼTKT S−1

ε y

= ṼGSVDy

= xSVD. (22)

The result in Eq. (22) indicates that the above-modified OE
retrieval equation with xa = 0 and S−1

a = 0 is mathematically
identical to an SVD retrieval. In other words, the SVD re-
trieval may be viewed as a special case of the OE retrieval
that uses an uninformative prior for the state x and a pseudo-
inverse for computation of the gain matrix. This has also been
found by Cressie et al. (2017) in their analysis of the AIRS
retrieval algorithm.

3.4 SVD retrieval error covariance matrix and
averaging kernels

One of the strengths of the OE method is the ability to
propagate errors from the inputs to the final estimate of the
state vector x. Given the prior covariance matrix Sa and
measurement-error covariance matrix Sε , Rodgers (2000)
demonstrated that the posterior covariance matrix for the OE
estimate in Eq. (16) is

Sx,oe =
(

S−1
a +KT S−1

ε K
)−1

. (23)

Since we have demonstrated in Sect. 3.3 that the SVD ap-
proach is equivalent to optimal estimation with xa = 0 and
S−1

a = 0, we can apply those values into Eq. (23) to obtain
the SVD posterior covariance matrix Sx,svd as follows:

Sx,svd =
(

KT S−1
ε K

)−1
. (24)

In some applications,
(
KT S−1

ε K
)

might not be full rank, and
thus the expression in Eq. (24) may be approximated using a
pseudo-inverse:

Sx,svd =
(

KT S−1
ε K

)+
. (25)

Note that the SVD posterior matrix in Eq. (24) is in the x
basis. It is straightforward to transform it to the z basis using
the linear transformation in Eq. (9):

Sz = ṼT Sx,svdṼ

= ṼT
(

KT S−1
ε K

)+
Ṽ

= ṼT Ṽ
(

ṼTKT S−1
ε KṼ

)−1
ṼT Ṽ

Sz =
(

ṼTKT S−1
ε KṼ

)−1

=

(̃
ITm+1,p0

T 0̃Im+1,p

)−1
. (26)

Since 0 and Ĩm+1,p have nonzero elements only on the
main diagonal, the retrieval error covariance matrix Sz has
no off-diagonal terms, implying that errors in the retrieved
parameters are uncorrelated.

The averaging kernels of the z retrieval elements can be
calculated using (Eskes and Boersma, 2003)

ASVD =
∂ ẑ

∂x
=GSVDK (27)

=

[
ṼTKT S−1

ε KṼ
]−1

ṼTKT S−1
ε K,

ASVDṼ =

[
ṼTKT S−1

ε KṼ
]−1

ṼTKT S−1
ε KṼ

= Ip p×p identitymatrix
ASVD = ṼT . (28)
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Thus, in calculating the averaging kernel, one obtains the
simplified Eq. (28), where ṼT can be directly obtained from
the singular value decomposition step with the appropriate
truncation. The reader should note that the degree of trunca-
tion only affects the number of components (rows) in the av-
eraging kernel ASVD but not the information content (number
of columns) or shapes of the individual components them-
selves.

3.5 SVD principal components free of bias from
regularization and use of a prior

In practice, biases in GHG measurements occur due to sev-
eral reasons, many of which are out of the scope of this pa-
per. To limit the discussion on biases arising from solving an
underdetermined problem using some form of regularization
(retrieval error, which is universal to all GHG measurements)
we make two further assumptions:

1. Negligible error in the knowledge of the atmospheric
pressure, temperature and water vapor profile (b). These
errors have been found to be small in practice (Abshire
et al., 2018) and can be further reduced with auxiliary
measurements.

2. Negligible errors in radiative transfer equations (for-
ward model), instrument calibration or other similar
systematic effects.

Retrieval errors in the traditional OE method can arise
from incorrect assumptions about the true greenhouse gas
profile distribution. For the SVD method, we see a poten-
tial bias in retrievals in the original x basis but not in the
principal component z basis.

We will first derive the expected bias for the OE method
where the input prior mean and covariance matrix are incor-
rect. We assume that the true state process x has the true
mean xt and the true covariance matrix St. However, we as-
sume that in practice the OE algorithm is using the prior
mean xa and covariance matrix Sa. Note that the true prior
distribution, {xt,St}, and the one used in the computations,
{xa,Sa}, are not necessarily the same. When they do differ,
there is an expected bias, which we will show below.

The expected bias is defined as

Bias= E(x̂− xt), (29)

where E() denotes the expectation value averaged over sev-
eral measurements, such that random noise, ε averages out to
zero. We now substitute the OE retrieval equation (Eq. 15):

BiasOE = E(xa+GOEy− xt),

= E(xa+GOE(K(xt− xa)+ ε)− xt),

where we have applied the forward-model equation for a true
state xt with noise ε. Simplifying the equation and substitut-

ing for GOE, we get

BiasOE = (I−GOEK)(xa− xt)

= (S−1
a +KS−1

ε K)−1S−1
a (xa− xt). (30)

Looking at Eq. (30), we see that the expected bias in OE
retrievals is proportional to (xa− xt), or the difference be-
tween the true prior mean and one used in practice. Equa-
tion (30) also shows that when the constraint on the Bayesian
OE is set too high (Sa is small and thus S−1

a is large), there is
a significant bias in the retrieval from the mismatch between
the true mean and the prior mean assumed in the retrieval.

We now derive the bias when using the SVD method. We
assume a true state xt and an uninformative prior xu. We
again start with the bias equation

Bias= E(x̂− xt),

where x̂ denotes the SVD retrieved result ẑ (Eq. 13) trans-
formed to the x basis using Eq. (12). This can be expanded
to give

BiasSVD = E(xu+ ṼGSVDy− xt). (31)

We have deliberately left in the uninformative prior xu for
better illustration of the bias. We now include the linearized
forward model (Eq. 4), and the noise (Eq. 2):

BiasSVD = E(xu+ ṼGSVD(K(xt− xu)+ ε)− xt). (32)
= (I− ṼGSVDK)(xu− xt)

= (I− (KT S−1
ε K)+KT S−1

ε K)(xu− xt), (33)

where we have applied the pseudo-inverse derivation
(Eqs. 18 and 22) of the SVD retrieval.

As we can see in Eq. (33), when the term KT S−1
ε K is sin-

gular, then the product of it against its pseudo-inverse (i.e.,
(KT S−1

ε K)+KT S−1
ε K) is not equal to the identity matrix,

and hence the bias will generally be nonzero. This can be
further illustrated by applying Eqs. (19) and (21),

BiasSVD = (I− ṼṼT )(xu− xt), (34)

where ṼṼT is of rank p and not equal to the (m+1) rank
identity matrix (see Eq. 11).

Fortunately, when we look at the retrievals on the z space,
the retrievals are unbiased. Given that there is no loss of in-
formation in projecting the retrieval results from the z ba-
sis to the x basis as was done above, we can simply project
Eq. (34) back to the z basis using Eq. (9):

BiasSVD,z = ṼT (I− ṼṼT )(xu− xt),

= (ṼT − ṼT ṼṼT )(xu− xt),

= 0, (35)

where we have used ṼT Ṽ= Ip from Eq. (10). It should be
noted that the bias-free result holds regardless of the degree
of truncation or choice of the uninformative prior. A different
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choice of the uninformative prior may change the Jacobian K
and thus all downstream calculations including the principal
component z basis, but the above bias-free result would nev-
ertheless hold in the changed z basis. The bias-free result will
be illustrated via numerical simulations in Sect. 5.

As a caveat, we note that the bias derivation above assumes
that the forward model is linear (as is the case for GHG re-
trievals discussed here; see Sect. 2.3) for both the OE and
SVD retrieval, and therefore the bias equations for OE and
SVD (Eqs. 30 and 34) should only hold when the assumption
is true or mostly true. For the more general nonlinear forward
model, both the OE and SVD retrievals might be biased, but a
thorough exploration of this nonlinear case beyond the scope
of this paper is required.

3.6 SVD retrieval validation

SVD retrievals can be validated directly in the retrieval z ba-
sis by transforming the validation data in the parameter space
x basis using Eq. (9). Since the retrieval error covariance ma-
trix Sz is defined in this basis, the expected scatter based on
the assumed noise distribution, calculated using Eq. (26) can
be compared against the actual scatter based on a large num-
ber of measurements.

4 SVD approach applied to IPDA lidar CO2
measurements

We choose the NASA Goddard CO2 Sounder instrument
concept (Abshire et al., 2018) as an example with which to
describe the SVD technique. The CO2 Sounder is a lidar in-
strument that probes the 1572.335 nm CO2 absorption line
with multiple (between 15 and 30) wavelength samples (Ab-
shire et al., 2018). To best illustrate the matrix algebra, we
choose the 15-wavelength sampling scheme from a recent
field campaign (n= 15). The column absorption lineshape
and wavelength sampling are shown in Fig. 1. For CO2,
the atmosphere can be modeled using 100 layers (m= 100),
where the layers are spaced almost evenly in pressure to have
equal weight.

4.1 Forward model

The forward model can be linearized to produce the kernel
matrix K as shown in Eq. (5). In Fig. 2, we illustrate K by
plotting two columns of the K kernel matrix and two rows.
The heterogeneity of the K matrix in row and column space
is key for the SVD technique to be able to extract principal
components.

4.2 Measurement noise

For IPDA lidar instruments, one primary limitation is photon
shot noise, which is a fundamental quantum noise with vari-
ance equal to the number of photons detected. Photon shot
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Figure 2. Forward-model K matrix: (a) we illustrate the K matrix
by plotting two columns, each corresponding to the absorption due
to a certain slice of the atmosphere. With increasing atmospheric
pressure, the absorption lineshape is pressure-broadened. (b) We
plot three rows of K, each showing the dependence of the absorption
to different parts of the atmosphere for a given measurement wave-
length sample. The sample wavelength corresponding to each row
has been expressed as a deviation from the absorption line center
1572.335122 nm. The absorption is lower the further one deviates
from the absorption line center.

noise is the fundamental limiting factor of measurement pre-
cision when lidar instruments are laser power limited, which
is often the case. Although other forms of noise, such as de-
tector dark current noise, laser speckle noise and solar back-
ground noise, also play a role, their effect on the principal
components is limited. For this reason and for simplicity, we
will assume a photon shot noise limited lidar instrument.

For this example, we will assume an integrated photon
count of s0 for a wavelength sample with no CO2 absorption.
This would give an optical signal level of

s(λj )= soT (λj ,x) (36)

for each of the wavelength samples λj . From the definition
of the forward model in Eq. (3), we can set

yj = − log
(

s(λj )

T (λj ,x0)

)
〈(yj −〈yj 〉)

2
〉 =

(
1

s(λj )
×

√
s(λj )

)2

=
1

s0T (λj ,x)
. (37)

Using Eq. (37), we can now define the measurement error
covariance matrix as

Sε =
1
s0


T (λ1,x)

−1 0 . . . 0
0 T (λ2,x)

−1 . . . 0
...

...
. . .

...

0 0 . . . T (λn,x)
−1

. (38)

4.3 SVD averaging kernels and error covariance

The CO2 column dependence of the averaging kernels are
plotted in Fig. 3. The first term of the singular value decom-
position is mostly derived from x0 (Ṽ1,1 > 0.999), and thus
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Figure 3. SVD retrieval basis: (a) the rows of the G matrix are plot-
ted as a function of the wavelength of the measurement samples.
(b) The averaging kernels of the first three CO2 principal compo-
nent terms are plotted. Each subsequent term has an additional zero
crossing in the averaging kernel.

a measure of the mean signal amplitude (see Fig. 3, left).
This is to be expected since every wavelength sample is, in a
sense, independently measuring the signal amplitude making
it the most prominent term. It is more sensitive to wavelength
samples on the wings of the absorption line since those do not
see much of CO2 absorption. The second term of the SVD
is the first CO2 principal component (PC) and behaves like
a column-averaged CO2 mixing ratio or XCO2 with units of
ppm. It should be noted that what is commonly referred to as
the column mean in the retrieval community (including this
work) should not be construed as a true column mean, i.e.
one that has a flat averaging kernel and is thus insensitive to
vertical transport of GHG molecules. As one can see in Fig. 3
(right), the column mean averaging kernel has some vertical
dependence.

The third term from the SVD or second CO2 PC behaves
analogously to a dipole moment (for instance, the electric
dipole moment in physics) and can be assigned dipole mo-
ment units of ppm B2. Analogous to the electric dipole mo-
ment, which has units of electric charge × distance, this
dipole moment has units of ppm B (“charg”) × B (“dis-
tance”)= ppm B2.

The vertical dipole PC carries information about the
vertical distribution of CO2 and will be examined in de-
tail in the next section. Typical values are between −0.5
and 0.5 ppm B2, with more extreme values going up to
±1.5 ppm B2. One requires a precision of about 0.1 ppm B2

in retrieving the CO2 vertical dipole moment in order to pro-
vide some useful vertical information about the CO2 distri-
bution. The fourth term or third CO2 PC is the quadrupole
moment of the column CO2 mixing ratio profile. The averag-
ing kernels for the first three CO2 principal components are
plotted in Fig. 3 (right).

As seen earlier in Eq. (26), the SVD approach ensures that
the random errors in the retrieved quantities are uncorrelated.
The variance of the retrieved quantities increases with princi-
pal component order, with the vertical dipole moment being

about 4.5× less precise (standard deviation) than the column
mean and the vertical quadrupole moment being a further 7×
less precise.

4.4 Effect of spectral resolution on SVD retrievals

Higher-order CO2 PCs rely on the differential pressure
broadening in the CO2 absorption lineshape along the atmo-
spheric column to provide information about the vertical dis-
tribution of CO2. For this reason, unlike the column XCO2 ,
they are expected to be sensitive to the instrument spectral
resolution.

For passive spectrometers that work by resolving sunlight
passing through the atmosphere, the instrument spectral res-
olution and sampling density are directly related and often
close to one another. In contrast, lidar instruments probe the
atmosphere with essentially monochromatic light; i.e. the
laser spectral width is much narrower than gas absorption
linewidth, and have spectral resolutions orders of magnitude
better than the sampling density. It is important for the reader
to note that high-quality measurements for the purposes of
obtaining vertical information require high spectral resolu-
tion but not necessarily high sampling density. As we shall
see in this section, for a given sampling density, the measure-
ment precision depends strongly on the instrument spectral
resolution.

We calculate the expected random noise in retrieving the
first two PCs for a range of instrument spectral resolutions
(see Fig. 4). The precision of the column XCO2 showed little
change with poorer spectral resolution as one would expect.
In contrast, the precision of the CO2 vertical dipole moment
very quickly degrades with instrument line broadening. The
result has been calculated for the specific case of a wave-
length sampling scheme sampling a single absorption line,
i.e. the CO2 Sounder lidar sampling scheme. Nevertheless,
the results still give some indication of the importance of
spectral resolution.

The ability of satellite-based passive spectrometers to re-
solve the CO2 vertical structure is expected to be signifi-
cantly hampered by their poorer spectral resolutions com-
pared to instruments like TCCON or the CO2 Sounder. Al-
though, in theory, random errors can be overcome by longer
integration times or having more wavelength samples, in
practice, as has been the experience of satellite GHG instru-
ments as of the time of writing, systematic effects ultimately
limit the accuracy of the measurement. Thus, spectral resolu-
tion is crucial in trying to resolve information on the vertical
GHG distribution.
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Figure 4. Retrieval uncertainty versus instrument spectral linewidth
for the first two CO2 principal components (PCs): while the column
XCO2 is largely unaffected by the spectral resolution, the precision
of the CO2 vertical dipole moment degrades strongly with poorer
resolution. We assume a CO2 instrument model, but with some in-
strument line broadening. The x axis denotes the full width at half
maximum of the triangular instrument lineshape used to broaden
the CO2 absorption. We assume photon shot noise with an SNR of
1000 for points with no CO2 absorption. The spectral resolutions of
TCCON (Wunch et al., 2011), satellite GHG-sensing spectrometers
(Kuze et al., 2009; Connor et al., 2008) and the CO2 Sounder instru-
ment are indicated, though the calculations done in this work apply
only to the CO2 Sounder instrument. Typical actual precisions for
XCO2 are 0.15 ppm for TCCON (Wunch et al., 2011), 0.6 ppm (land
only) for ACOS GOSAT (O’Dell et al., 2012), and 0.55 ppm (land
only) for OCO-2 (Connor et al., 2016a).

5 Numerical simulations comparing singular value
decomposition with Bayesian optimal estimation

In this section, we will look at the retrieval performance of
the SVD and traditional OE (refers to OE retrievals with
finite Sa) methods for simulated data. After describing the
methodology used for comparisons, we will highlight the pit-
falls of using too strong or too weak a constraint with the
traditional OE method, and how the SVD method provides
useful information in the principal component basis inde-
pendently of the degree of constraint. Then, we will show
a case in which the SVD approach successfully extracts ver-
tical CO2 information from the absorption measurement.

5.1 Methodology

For the simulations, we use a CO2 Sounder instrument model
with 30 wavelength samples (n= 30) to better illustrate the
shape of the residuals. The measurement is made over a ver-
tical air column from the surface to the top-of-atmosphere.
For the full model basis (x basis), we divide the atmosphere
into 100 equal levels (m= 100), each spanning a 10 mB pres-
sure interval. We make comparisons for three different cases,
which will be described in the following subsections.

xtruth y
zSVD

xOE

Noise zSVD

zOE

Sa, xa

xuSε

ztruth

Repeat N times

Aggregate
& compare

Figure 5. Comparing SVD and OE retrievals: using simulated data
y generated from a CO2 profile xtruth, we perform SVD and tra-
ditional OE retrievals and compare their results averaged over an
N = 1000 ensemble projected onto the z basis. Specifically, we look
at the variance and the bias compared to ztruth, which is projected
from xtruth. We specify an uninformative prior xu for the SVD re-
sults and a Bayesian prior mean xa and prior covariance matrix Sa.

For each case, we define a “true” CO2 profile, xtruth and
compute the total absorption lineshape. We then compute
the signal at the sample wavelengths (using Eq. 36) and
add photon shot noise as per Eq. (37) to create a “measure-
ment” y (see Fig. 5. For all simulations, we set s0 = 106,
which implies SNR= 1000 for points with no CO2 absorp-
tion. The measurement error covariance matrix is computed
using Eq. (38). We then perform retrievals with the tradi-
tional OE (using Eq. 15) and SVD (using Eq. 13) approaches
in their respective bases. By doing this for an ensemble of
measurements, using the same xtruth and s0 but a different
instance of noise each time, we get a set of results that can be
characterized by a mean and standard deviation.

Since the SVD principal components are unbiased, we
make quantitative comparisons between the two techniques
in that z basis. While the idea of using the z basis might seem
new, in practice, column-averaged measurements are typi-
cally used for flux estimations. Thus, results in the z basis for
the OE method do have wider implications. We also project
the SVD results back onto the x basis using Eq. (12) to get
an intuitive sense of how the SVD and OE approaches work.
This last projection is essentially a reduced-rank pseudo-
inverse calculation (see Sect. 3.3).

For the SVD approach, we set the uninformative prior xu
to be a uniform 400 ppm CO2 profile and anchor our defi-
nition of x to it. From this, x =−0.02,0,0.02 would corre-
spond to mixing ratios of 392, 400 and 408 ppm. For the OE
approach, a proper choice of a Bayesian prior would factor in
local meteorology, vertical mixing and confidence in global
GHG models at the location in question. However, for the
purpose of illustration of the workings of the OE method, we
have kept the Bayesian prior mean and covariance simple.
The Bayesian prior mean and variance (diagonal terms on
the covariance matrix) are chosen on a case-by-case basis.
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Figure 6. Sample retrieval for a single simulated measurement (noise instance) under a weak constraint (four principal components for SVD,
100 % prior uncertainty for each CO2 level for OE). (a) The SVD and traditional OE approaches successfully minimize the fit residual to
match that of the noise, thus demonstrating convergence. Results projected to the z basis show reasonable performance of the XCO2 column
mean (first principal component) but poor performances for higher-order terms (not shown), indicating overfitting to the noise. (b) Results
projected to the x basis show highly oscillatory and divergent profiles due to the instability in overfitting. Thus, traditional OE results in the
full model x basis are not useful and need projection onto the z basis or other transformation. Note that this has been shown for illustrative
purposes. A proper evaluation of the methods requires an ensemble average of such simulations (see Fig. 8 left and center)

For the prior covariance (off-diagonal terms in the covari-
ance matrix), we assume a 200 mB 1/e2 vertical correlation
distance in the CO2 concentration in the atmosphere.

5.2 Constraining the retrieval for regularization

GHG retrievals require some sort of constraint to regularize
the retrieval problem (see Sect. 2.1). The level of constraint
of an OE retrieval can be expressed as the relative strength of
the weighting on the prior value, which is inversely propor-
tional to the prior uncertainty. This uncertainty is specified in
the prior covariance matrix Sa. In our simulations, the prior
uncertainty of the CO2 concentration at each level (xi in x) is
varied between 0.1 % and 100 % (strong to weak) depending
on the case.

SVD retrievals are constrained by the number of princi-
pal components used in the line-fitting. While the constraint
is applied in qualitatively different ways to the two retrieval
methodologies, the effect is somewhat similar particularly
for weak constraints, since the SVD method is the limiting
case of a weak prior constraint (discussed in Sect. 3.3). For
the SVD method, we retrieve between 1 and 4 (strong to
weak) CO2 principal components depending on the case.

5.3 Case 1: Underconstrained fit

We choose a sample profile from an atmospheric CO2 pro-
file measured from aircraft using an in situ instrument from
an airborne campaign over California in 2016 (Abshire et al.,
2018). For the underconstrained case, we set the prior un-
certainty in Sa for the traditional OE method to be 100 %.
For the SVD retrieval, we include four CO2 principal com-
ponents (see Fig. 3 for a description of the components) in the

fit. The results for a single simulated measurement are shown
in Fig. 6 (this can be contrasted with Fig. 7, which has results
for an overconstrained fit). As expected, the OE retrieval (and
SVD retrieval projected to x basis) results in a CO2 column
with widely varying mixing ratios. Nevertheless, in the SVD
z basis, both methods produce meaningful column averaged
XCO2 results. This is due to the orthogonality of the principal
component basis, ensuring that lower-order components are
unaffected by large swings or errors in higher-order compo-
nents.

Ensemble results (Fig. 8, left and center) further confirm
that the SVD and OE methods both produce bias-free results
in the principal component z basis. In addition, we see that
the calculated uncertainty from Eq. (26) is in good agreement
with the variance in the SVD ensemble as well as the weakly
constrained OE ensemble.

5.4 Case 2: Overconstrained fit

A strong constraint puts restrictions on the state vector and
prevents a retrieval from fully minimizing the residual. Here,
we set the prior uncertainty in Sa for the traditional OE
method to be 0.1 %. For the SVD retrieval, we allow just one
CO2 principal component in the fit. The effects of a strong
constraint in each case is shown in Fig. 7. While the OE
method shows a clear bias towards the prior mean (Xa), the
SVD method is still able to retrieve an accurate XCO2 column
mean. Again, this is due to the orthogonality of the principal
component basis, ensuring that lower-order components are
unaffected by the absence of higher-order components in the
fitting.

Ensemble results (Fig. 8, right) further illustrate the bias
in the traditional OE method with strong weighting towards
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(a) y-basis (measurement) and residuals
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Figure 7. Sample retrieval for a single simulated measurement under strong constraint (one principal component for SVD, 0.1 % prior
uncertainty for each CO2 level for OE). (a) Both the SVD and traditional OE approaches produce persistent residuals well above the noise
levels due to the strong constraint. For the SVD method, the XCO2 column mean (first principal component in the z basis) is nevertheless
bias-free. However, the OE method shows a bias when the results are projected to the z basis. (b) Results projected to the x basis also show
a clear bias for the OE method, though the CO2 profile is well behaved. This shows that, when using the Bayesian prior as a regularization to
get a well-behaved CO2 profile, one runs the risk of overconstraining the retrieval and incurring a bias in the column mean. See Fig. 8 (right)
for ensemble results.
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Figure 8. Ensemble results for retrieved CO2 parameters from numerical simulations. For a weak constraint (see Fig. 6), the SVD method
and OE methods both produce good results in the z basis for both the CO2 vertical dipole moment (a) and XCO2 column mean (b), which
constitute the first two principal components (note that SVD and OE histograms are almost perfectly overlapped). Results are in line with the
expected variance, Sz from the SVD method. Under a strong constraint (c, Fig. 7), the OE method produces a smaller standard deviation but
starts to incur a bias, whereas the SVD method continues to produce accurate results but with no reduction in the variance. Note that for the
strong constraint case, the SVD CO2 vertical dipole moment is not retrieved.

the prior mean. Correspondingly, with a low uncertainty in
the prior mean, the traditional OE retrievals produce a lower
variance. Thus, in order to benefit from the availability of
prior information, the prior mean needs to be in good agree-
ment with the true mean. Ensemble results for the SVD
method show that it remains bias-free. The calculated un-
certainty for the SVD method, which is independent of the
number of principal components, is unchanged, and ensem-
ble results confirm the same.

Although a rather extreme constraint has been applied for
the traditional OE method, the results show that there are in-
trinsic problems in using a constraint that is too strong. Often,
such biases are subtle and less obvious, but nevertheless af-
fect flux measurements, which are based on several thousand

soundings and are sensitive to small biases. In contrast, the
SVD approach is more robust.

5.5 Case 3: Extracting vertical CO2 information using
the vertical dipole moment term

Having demonstrated the SVD method’s general robustness,
we now look at the extraction of vertical information about
the CO2 distribution. During a flight over Iowa during the
summer crop season in 2011, in situ measurements of the at-
mospheric CO2 concentration profile showed a sharp 15 ppm
drawdown in the boundary layer compared to the free tro-
posphere (Ramanathan et al., 2015). When projected on the
basis of principal components, this corresponded to a sig-
nificant vertical dipole moment of −1.53 ppm B2. Figure 9
shows the SVD method capture the vertical dipole moment
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Figure 9. Sample simulated measurement of vertical dipole moment using the SVD method and appropriate constraint. (a) The SVD and
OE approaches demonstrate good convergence, and since the SNR is relatively high, the residuals are small. Results projected to the z
basis show reasonable performance of both techniques for retrieving the XCO2 column mean (first principal component) and vertical dipole
moment, with agreement within the expected variance. (b) Both methods detect the overall decrease in the CO2 concentration at low altitudes.
Despite a helpful Bayesian prior, the OE retrieval still differs significantly from the true profile. In addition, despite the CO2 profile differing
significantly from the uninformative prior used in the SVD method, the bias in the retrieved XCO2 is small and for this instance, likely due
to random errors (see Fig. 10 for more precise comparisons using an ensemble of simulations).

with an uncertainty of ±0.15 ppm B2. When projected back
to the x basis, the CO2 vertical profile reconstructed from the
principal components shows that the SVD method is able to
reproduce the overall shape but not the sharp increase in the
planetary boundary layer. The OE method produces similar
results despite a helpful prior from climatology data being
used. Biases in the x basis are still rather high, at >5 ppm.

Figure 10 highlights the performance of the SVD and tra-
ditional OE methods in measuring the column mean. For the
SVD method, we look at ensemble results for several choices
in the number of principal components, ranging from 4 (un-
derconstrained) to 1 (overconstrained). For the OE method,
we correspondingly vary the prior mean uncertainty (for
each layer) from 100 % (underconstrained) to 0.1 % (over-
constrained). We look at the variance and the bias of the
XCO2 column mean. At the weakest constraints, the SVD and
OE methods behave similarly as expected. As the level of
constraint is increased, the OE measurement starts to have a
lower variance, but incurs a bias since the assumed prior CO2
profile differs from the truth (see Fig. 9). The SVD method
column mean, in contrast, is unaffected despite the uninfor-
mative prior (400 ppm uniform column) also differing signif-
icantly from the truth. This illustrates the robustness of the
SVD method.

Figure 11 shows similar behavior for the retrieved verti-
cal dipole moment. As with the column mean, the SVD and
traditional OE methods behave similarly at weak constraints.
As the constraint is increased the OE method starts to have a
lower variance, but also incurs a significant bias.

6 Discussion

The SVD framework and its use of principal components
provides a mathematical basis on which to determine what
information can be extracted from GHG column absorption
measurements. Section 3.5 confirms the notion that the re-
trieval of a column mean using least-squares line fitting of an
absorption spectrum yields an estimate of the XGHG without
incurring bias from the regularization or retrieval, regardless
of the shape of the profile used in the prior (which turns out to
be uninformative). Beyond the retrieval of the column mean,
the SVD framework identifies higher-order modes such as
the vertical gradient (vertical dipole moment), which can po-
tentially be retrieved with sufficient measurement precision.

Although the numerical results from the SVD method have
been shown for the CO2 Sounder lidar instrument, the SVD
method itself can also be applied to total column absorp-
tion measurements from ground-based and satellite spec-
trometers, since those instruments also measure pressure-
broadened absorption lineshapes in the atmosphere. A key
parameter affecting the principal components and the preci-
sion to which they can be retrieved is the instrument spec-
tral resolution or linewidth (see Fig. 4). While ground-based
spectrometers like TCCON and mini-LHR have a high spec-
tral resolution and can retrieve more than one principal com-
ponent, others such as the lower-resolution Bruker EM27
(0.5 cm−1 resolution, Gisi et al., 2012) will have significantly
poorer precision for higher-order principal components. Fur-
thermore, satellite instruments like GOSAT and OCO-2, be-
sides having coarser spectral resolution, have the additional
complication of aerosol scattering mixed with the signal (due
to the lack of range gating of the surface reflected signal),
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Figure 10. Robust measurement of the XCO2 column mean by the
SVD method. Results from ensembles of 1000 numerical experi-
ments show that for retrievals using the SVD method for a range of
constraints (one to four principal components), the variance (a) and
bias (b) in the column mean XCO2 are robust. In contrast, a similar
change in constraint when using the OE retrievals (changing prior
uncertainty in the layer CO2 mixing ratio from 100 % to 0.1 %) pro-
duces a decrease in the variance of XCO2 , but also a sharp increase
in bias, above the 0.5 ppm accuracy needed for reasonable CO2 flux
inversions. Insets in the lower plot illustrate the ensemble distribu-
tions at different constraint points as done in Fig. 8 (center and right
plots).

which can limit the accuracy of the retrieved principal com-
ponents.

6.1 Advantages of using principal components

The primary benefits of using the SVD method with re-
trievals in the principal component basis can be summarized
as follows:

1. retrieval of higher-order terms of the greenhouse gas
vertical distribution (beyond the column mean) in the
atmosphere,

2. no bias from the use of an uninformative prior,

3. orthogonality of principal components leading to robust
retrievals independent of the degree of constraint (num-
ber of components solved for).

The robustness of the SVD method makes it useful in sit-
uations where the prior state is not well known or the uncer-
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Figure 11. Robust measurement of the CO2 vertical dipole moment
by the SVD method. As in Fig. 10, we look at the variance (a) and
bias (b) in the retrieved CO2 vertical dipole moment for ensem-
bles of 1000 numerical experiments at varying constraints. As with
the column XCO2 , the SVD results are robust and unaffected by the
changing number (two to four) of principal components. In contrast,
the OE results incur a significant bias (0.1 ppm B2) when the prior
uncertainty (the regularizing constraint) for the CO2 mixing ratio at
each layer is set at 1 %. Insets in the lower plot illustrate the ensem-
ble distributions at the minimum and maximum constraints as done
in Fig. 8 (left plot).

tainty in the prior is not well quantified. For instance, CO2
vertical profiles are measured only at a few locations around
the Earth. While CO2 retrievals over those select locations
could benefit from the use of a Bayesian prior, retrievals over
remote regions far from those places would better be served
by the SVD method since the prior knowledge of the CO2
profile is not well known (see Sect. 6.4 for when to choose
SVD over OE). This is a key virtue of the SVD method.

The robustness of the SVD method may also make it eas-
ier to use in an operational environment where atmospheric
and surface conditions can change the measurement preci-
sion significantly. Rather than using advanced retrieval meth-
ods to get vertical information separately from the main re-
trieval of the column mean (as in Kulawik et al., 2017), one
can simply retrieve several principal components in the main
retrieval itself (and keep them as part of the main product),
but only assimilate the components that have sufficient pre-
cision in GHG flux models.

Furthermore, when performing the retrieval in the princi-
pal component basis, the SVD method requires fewer com-
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putations than the OE method, which works in the full model
basis. This has the potential to make the retrieval faster and
more efficient. In addition, the reduced basis of mutually or-
thogonal principal components makes retrieval analysis eas-
ier. Troubleshooting systematic or forward-model errors are
also simpler in the principal component basis since the ba-
sis is smaller and the prior is uninformative, allowing one
to more easily see the effects (manifested as a bias) on the
different components.

6.2 Practical application of the SVD method to GHG
retrievals

In practice, interference from other gas species in the atmo-
sphere (for instance, water vapor) and instrument system-
atic errors prevent the simultaneous realization of all benefits
listed in Sect. 6.1 with the use of the SVD method. Neverthe-
less, one can use the SVD framework to analyze the problem
and try to get most of the benefits. While a full analysis of all
interferences and systematic errors and their effects on SVD
retrievals is beyond the scope of this work, we give a simple
example to show how certain types of interferences can be
treated within the SVD framework.

The presence of a water vapor line at the shoulder of the
CO2 absorption line described in this work (also see Abshire
et al., 2018) causes the principal components to have com-
binations of water vapor and CO2 mixing ratios that are not
physically meaningful. If one chooses to use the principal
component retrieval basis, one gets benefits 2 and 3 described
above but not benefit 1. If one chooses to keep the CO2 mix-
ing ratio principal components separate from the water vapor
components in the retrieval basis, one gets benefits 1 and per-
haps benefit 2 but not benefit 3. One can also use techniques
like clumped fitting (Abshire et al., 2018) to use information
based on spatial correlations of the water vapor mixing ratio
as well as other systematic effects to try and get at all three
key benefits.

6.3 Comparing the SVD method to Kulawik et
al. (2016)

The SVD method discussed here bears some similarity to the
approach used by Kulawik et al. (2017) to extract vertical
information. Both methods use an uninformative prior and
retrieve two pieces of information about the CO2 column.
Although the LMT (lowermost troposphere) CO2 product is
easier to relate to given that it represents the mixing ratio
of the bottom 2.5 km of the atmosphere, it does have some
sensitivity (with opposite sign) of higher altitude CO2 con-
centrations similar to that of the CO2 vertical dipole moment
term discussed in this work.

There are also some important differences between the two
methods. In using principal components, the SVD retrieval
produces orthogonal parameters that have uncorrelated errors
and thus errors in the XCO2 are uncorrelated with those of
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Figure 12. Decision tree for a suitable retrieval approach when the
first principal component is a column mean. The quality of prior in-
formation compared to the signal-to-noise ratio (SNR) determines
which retrieval method would be better suited. The SVD method
(with principal components retrieved) is robust and can be applied
to a range of situations. However, in situations where the prior infor-
mation is good (relative to the measurement SNR), the OE method
offers a clear advantage of a lower variance in the retrieved XCO2.

the CO2 vertical dipole moment. In contrast, given the way
the information is partitioned in Kulawik et al. (2017), the
LMT product is expected to be negatively correlated with
the U (upper atmosphere) product. In addition, it is expected
to have higher precision than the SVD vertical dipole mo-
ment for the same data. Future work will involve a quanti-
tative comparison of retrievals using the two techniques on
the same absorption data, which could better illustrate the
advantages of each of these methods.

6.4 Implications of using the traditional OE method

Going beyond the domain of trace gas retrievals to the
broader problem of atmospheric sounding, the simulations
shown in this paper underscore the importance of choosing
a proper Bayesian prior and prior covariance if using the OE
method. Ideally, the choice of these parameters will be from a
large sampling of the true state space. In the absence of such
data, the prior mean may be different from the true mean.
Setting or tuning of the constraint from the Bayesian prior for
the purpose of regularization of the retrieval problem runs the
risk of overstating prior knowledge and thus causing a bias.

In choosing between the SVD method and the traditional
OE method, one needs to factor in the quality of the prior in-
formation (See Fig. 12) relative to the signal-to-noise ratio of
the measurement. While the SVD method is always the safer
option (less susceptible to bias), in situations when the mea-
surement is noisy but the Bayesian prior is well character-
ized, the OE retrieval will result in a lower variance. Finally,
the SVD method can also be used to check the validity of an
OE prior used for retrieval.
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7 Conclusions and future work

We have described an approach to deducing vertical infor-
mation from column GHG retrievals based on the singular
value decomposition. The SVD approach does not require
an assumption of a prior distribution of the GHG profile for
regularizing the retrieval problem, and by using the principal
component basis for retrievals, the prior is rendered uninfor-
mative. Simulations comparing the SVD method to the tra-
ditional Bayesian OE (using an informative prior) show that
the SVD method is more robust and better suited to situa-
tions where prior knowledge of the CO2 concentration and
distribution is lacking or poorly characterized.

Intuitively, OE derives an estimate of the state using both
the measurement and prior knowledge, while SVD only uses
the measurement to inform its estimate. When the prior infor-
mation is correct, there is no doubt that OE will have lower
posterior uncertainty since OE can leverage an extra source
of information to more efficiently derive its estimate. How-
ever, this efficiency comes at a potential cost when the prior
is incorrect. For instance, we showed that when OE uses an
incorrect prior mean, then the estimate is guaranteed to be bi-
ased. Estimates from the SVD method in the principal com-
ponent basis, on the other hand, are insensitive to incorrect
information coming from the prior. The choice between SVD
and OE then mostly comes down to how well one under-
stands the prior distribution of the state of interest.

In this work, we have assumed a perfect forward model
and only random errors in the measurement. This is a nec-
essary first step check for the feasibility of the method.
However, in practice, other sources of error such as imper-
fect instrument calibration, imperfect knowledge of atmo-
spheric state and forward-model approximations play impor-
tant roles. Our preliminary attempts using CO2 Sounder data
from airborne field campaigns have shown that small errors
in spectroscopy arising from neglecting the non-Voigt com-
ponent of the lineshape can cause significant biases. These
errors are beyond the scope of this paper and will be ad-
dressed in future work.

Another interesting topic is extending this work to nonlin-
ear forward models, where the minimization of the loss func-
tion in Eq. (6) amounts to solving a nonlinear least square
problem. In the traditional OE framework, the maximum a
posteriori solutions are popularly solved using some vari-
ation of Newton’s method. Since we have shown that the
SVD method can be viewed as an OE algorithm, its exten-
sion to the nonlinear forward model can similarly make use
of the iterative Newton’s method (Rodgers, 2000) to solve for
the maximum a posteriori solutions. Preliminary numerical
simulations indicate that the SVD method is still unbiased
for nonlinear forward models as long as F(·) is sufficiently
“smooth” at the retrieved state, though further studies are re-
quired.

Future work will also explore other aspects of the measure-
ment problem such as determining the optimal wavelength

sampling. In contrast to passive spectrometers, which can
have a large number of samples, lidar instruments bear some
cost for each additional sample. While in theory one needs
a wavelength sample for each principal component retrieved,
in practice one needs to oversample the line to help reduce
systematic errors (control biases). Determining the optimal
wavelength sampling to best obtain information about the
vertical distribution of the GHG while keeping biases low
is important in the design of space-based IPDA lidar instru-
ments for GHG measurements.
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